Integral Calculus Question 219

Question: $ \int_{{}}^{{}}{{{\sec }^{p}}x\tan x\ dx=} $

Options:

A) $ \frac{{{\sec }^{p+1}}x}{p+1}+c $

B) $ \frac{{{\sec }^{p}}x}{p}+c $

C) $ \frac{{{\tan }^{p+1}}x}{p+1}+c $

D) $ \frac{{{\tan }^{p}}x}{p}+c $

Show Answer

Answer:

Correct Answer: B

Solution:

Put $ \sec x=t\Rightarrow \sec x\tan x,dx=dt, $ therefore $ \int_{{}}^{{}}{{{\sec }^{p}}x\tan x,dx}=\int_{{}}^{{}}{{t^{p-1}}dt=\frac{t^{p}}{p}+c}=\frac{{{\sec }^{p}}x}{p}+c. $