Integral Calculus Question 227

Question: If $ f(x)=A\sin ( \frac{\pi x}{2} )+B $ and $ f’( \frac{1}{2} )=\sqrt{2} $ and $ \int_0^{1}{f(x)dx=\frac{2A}{\pi }} $ , then what is the value of B?

Options:

A) $ \frac{2}{\pi } $

B) $ \frac{4}{\pi } $

C) 0

D) 1

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given function $ f(x)=A\sin ( \frac{\pi x}{2} )+B $ Differentiating w.r.t. x $ f’(x)=A\cos ( \frac{\pi x}{2} ).\frac{\pi }{2} $ $ f’( \frac{1}{2} )=\sqrt{2}=A( \cos \frac{\pi }{4} )\frac{\pi }{2}=A.\frac{1}{\sqrt{2}}.\frac{\pi }{2} $

$ \Rightarrow A=\frac{(\sqrt{2}\times \sqrt{2})\times 2}{\pi }=\frac{4}{\pi } $ Now, $ \int_0^{1}{f(x)dx=\frac{2A}{\pi }} $

$ \Rightarrow \int_0^{1}{{ A\sin ( \frac{\pi x}{2} )+B }dx=\frac{2\times 4}{{{\pi }^{2}}}} $

$ \Rightarrow [ -A\cos \frac{\pi x}{2}.\frac{2}{\pi }+Bx ]_0^{1}=\frac{8}{{{\pi }^{2}}} $

$ \Rightarrow -\frac{4}{\pi }.\frac{2}{\pi }\cos \frac{\pi }{2}+B+\frac{4}{\pi }.\frac{2}{\pi }\cos 0=\frac{8}{{{\pi }^{2}}} $

$ \Rightarrow B+\frac{8}{{{\pi }^{2}}}=\frac{8}{{{\pi }^{2}}}\Rightarrow B=0 $