Integral Calculus Question 228

Question: $ \int\limits_0^{1}{\frac{1}{( x^{2}+16 )( x^{2}+25 )}dx=} $

Options:

A) $ \frac{1}{5}[ \frac{1}{4}{{\tan }^{-1}}( \frac{1}{4} )-\frac{1}{5}{{\tan }^{-1}}( \frac{1}{5} ) ] $

B) $ \frac{1}{9}[ \frac{1}{4}{{\tan }^{-1}}( \frac{1}{4} )-\frac{1}{5}{{\tan }^{-1}}( \frac{1}{5} ) ] $

C) $ \frac{1}{4}[ \frac{1}{4}{{\tan }^{-1}}( \frac{1}{4} )-\frac{1}{5}{{\tan }^{-1}}( \frac{1}{5} ) ] $

D) $ \frac{1}{9}[ \frac{1}{5}{{\tan }^{-1}}( \frac{1}{4} )-\frac{1}{5}{{\tan }^{-1}}( \frac{1}{5} ) ] $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let $ I=\int\limits_0^{1}{\frac{dx}{(x^{2}+16)(x^{2}+25)}} $ $ =\frac{1}{9}\int\limits_0^{1}{( \frac{1}{x^{2}+16}-\frac{1}{x^{2}+25} )dx} $ $ =\frac{1}{9}( \frac{1}{4}{{\tan }^{-1}}\frac{x}{4}-\frac{1}{5}{{\tan }^{-1}}\frac{x}{5} )_0^{1} $ $ =\frac{1}{9}[ \frac{1}{4}{{\tan }^{-1}}\frac{1}{4}-\frac{1}{5}{{\tan }^{-1}}\frac{1}{5} ] $