Integral Calculus Question 233

Question: $ \int_{{}}^{{}}{\frac{dx}{e^{x}-1}=} $

[MP PET 1989]

Options:

A) $ \ln (1-{e^{-x}})+c $

B) $ -\ln (1-{e^{-x}})+c $

C) $ \ln (e^{x}-1)+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\frac{dx}{e^{x}-1}=\int_{{}}^{{}}{\frac{{e^{-x}}}{1-{e^{-x}}},dx}} $ Put $ 1-{e^{-x}}=t\Rightarrow {e^{-x}}dx=dt, $ then it reduces to $ \int_{{}}^{{}}{\frac{dt}{t}=\log t+c}=\log (1-{e^{-x}})+c. $