Integral Calculus Question 236

Question: $ \int_{{}}^{{}}{x\sqrt{\frac{1-x^{2}}{1+x^{2}}}}\ dx= $

Options:

A) $ \frac{1}{2}[{{\sin }^{-1}}x^{2}+\sqrt{1-x^{4}}]+c $

B) $ \frac{1}{2}[{{\sin }^{-1}}x^{2}+\sqrt{1-x^{2}}]+c $

C) $ {{\sin }^{-1}}x^{2}+\sqrt{1-x^{4}}+c $

D) $ {{\sin }^{-1}}x^{2}+\sqrt{1-x^{2}}+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{x\sqrt{\frac{1-x^{2}}{1+x^{2}}}}dx=\int_{{}}^{{}}{\frac{x.,(1-x^{2})}{\sqrt{1-x^{4}}}}dx $ {Multiplying $ N^{r} $ and $ D^{r} $ by $ {{(1-x^{2})}^{1/2}}} $
$ =\int_{{}}^{{}}{\frac{x}{\sqrt{1-x^{4}}}},dx-\int_{{}}^{{}}{\frac{x^{3}}{\sqrt{1-x^{4}}}}dx $ $ =\frac{1}{2}[{{\sin }^{-1}}(x^{2})+\sqrt{1-x^{4}}]+c $ . (By putting $ x^{2}=t $ and $ \sqrt{1-x^{4}}=\sqrt{t} $ respectively)