Integral Calculus Question 256

Question: $ \int_{{}}^{{}}{\frac{\cot x\tan x}{{{\sec }^{2}}x-1}}\ dx= $

Options:

A) $ \cot x-x+c $

B) $ -\cot x+x+c $

C) $ \cot x+x+c $

D) $ -\cot x-x+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{\frac{\cot x\tan x}{{{\sec }^{2}}x-1},dx=\int_{{}}^{{}}{\frac{1}{{{\tan }^{2}}x},dx=\int_{{}}^{{}}{{{\cot }^{2}}x,dx}}} $ $ =\int_{{}}^{{}}{(cose{c^{2}}x-1),dx}=-\cot x-x+c. $