Integral Calculus Question 262

Question: $ \int_{{}}^{{}}{x{{\sin }^{2}}x\ dx=} $

[BIT Ranchi 1977; IIT 1972]

Options:

A) $ \frac{x^{2}}{4}+\frac{x}{4}\sin 2x+\frac{1}{8}\cos 2x+c $

B) $ \frac{x^{2}}{4}-\frac{x}{4}\sin 2x+\frac{1}{8}\cos 2x+c $

C) $ \frac{x^{2}}{4}+\frac{x}{4}\sin 2x-\frac{1}{8}\cos 2x+c $

D) $ \frac{x^{2}}{4}-\frac{x}{4}\sin 2x-\frac{1}{8}\cos 2x+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{x{{\sin }^{2}}x,dx}=\int_{{}}^{{}}{x,.,\frac{(1-\cos 2x)}{2},dx} $ $ =\frac{1}{2}[ \int_{{}}^{{}}{x,dx}-\int_{{}}^{{}}{x,.,\cos 2x,dx} ]=\frac{x^{2}}{4}-\frac{x}{4}\sin 2x-\frac{1}{8}\cos 2x+c $ .