Integral Calculus Question 265

Question: $ \int_{{}}^{{}}{\frac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x}\ dx=} $

[IIT 1986]

Options:

A) $ \sin 2x+c $

B) $ -\frac{1}{2}\sin 2x+c $

C) $ \frac{1}{2}\sin 2x+c $

D) $ -\sin 2x+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x},dx} $
$ =\int_{{}}^{{}}{\frac{({{\sin }^{4}}x+{{\cos }^{4}}x)({{\sin }^{4}}x-{{\cos }^{4}}x)}{{{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x}},dx $ $ =\int_{{}}^{{}}{({{\sin }^{4}}x-{{\cos }^{4}}x),dx} $
$ =\int_{{}}^{{}}{({{\sin }^{2}}x+{{\cos }^{2}}x)({{\sin }^{2}}x-{{\cos }^{2}}x),dx} $
$ =\int_{{}}^{{}}{({{\sin }^{2}}x-{{\cos }^{2}}x),dx} $ $ =\int_{{}}^{{}}{-\cos 2x,dx=-\frac{\sin 2x}{2}+c.} $