Integral Calculus Question 278

Question: If $ \int_{{}}^{{}}{\frac{dx}{1+\sin x}=\tan ( \frac{x}{2}+a )+b} $ , then

[Roorkee 1979]

Options:

A) $ a=\frac{\pi }{4},\ b=3 $

B) $ a=-\frac{\pi }{4},\ b=3 $

C) $ a=\frac{\pi }{4},\ b= $ arbitrary constant

D) $ a=-\frac{\pi }{4},\ b= $ arbitrary constant

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{\frac{dx}{1+\sin x}}=\tan x-\sec x+c=-\frac{1-\sin x}{\cos x} $ $ =-\frac{{{( \cos \frac{x}{2}-\sin \frac{x}{2} )}^{2}}}{{{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}}+c=-\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}+c $ $ =\frac{\tan \frac{x}{2}-1}{1+\tan \frac{x}{2}}+c=\tan ( \frac{x}{2}-\frac{\pi }{4} )+c $
$ \Rightarrow a=-\frac{\pi }{4},b= $ arbitrary constant.