Integral Calculus Question 289

Question: $ \int_{{}}^{{}}{\log (x+1)dx=} $

[Roorkee 1974]

Options:

A) $ (x+1)\log (x+1)-x+c $

B) $ (x+1)\log (x+1)+x+c $

C) $ (x-1)\log (x+1)-x+c $

D) $ (x-1)\log (x+1)+x+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\log (x+1),dx}=x\log (x+1)-\int_{{}}^{{}}{\frac{x}{x+1},dx+c} $ $ =x\log (x+1)-x+\log (x+1)+c=(x+1)\log (x+1)-x+c $ .