Integral Calculus Question 295

Question: $ \int_{{}}^{{}}{\frac{x^{2}+x-6}{(x-2)(x-1)}dx=} $

Options:

A) $ x+2\log (x-1)+c $

B) $ 2x+2\log (x-1)+c $

C) $ x+4\log (1-x)+c $

D) $ x+4\log (x-1)+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{\frac{x^{2}+x-6}{(x-2)(x-1)},dx}=\int_{{}}^{{}}{\frac{(x+3)(x-2)}{(x-2)(x-1)},dx}=\int_{{}}^{{}}{\frac{x+3}{x-1},dx} $ $ =\int_{{}}^{{}}{\frac{x-1}{x-1},dx+\int_{{}}^{{}}{\frac{4}{x-1},dx}}=x+4\log (x-1)+c $ .