Integral Calculus Question 299

Question: If $ \int_{{}}^{{}}{\frac{f(x)\ dx}{\log \sin x}=\log \log \sin x} $ , then $ f(x)= $

Options:

A) $ \sin x $

B) $ \cos x $

C) $ \log \sin x $

D) $ \cot x $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{\frac{f(x),dx}{\log \sin x}}=\log \log \sin x $ Differentiating both sides, we get $ \frac{f(x)}{\log \sin x}=\frac{\cot x}{\log \sin x}\Rightarrow f(x)=\cot x. $