Integral Calculus Question 314

Question: $ \int_{{}}^{{}}{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }}dx= $

[MP PET 1994]

Options:

A) $ 2[\sin x+x\cos \alpha ]+c $

B) $ 2[\sin x+\sin \alpha ]+c $

C) $ 2[-\sin x+x\cos \alpha ]+c $

D) $ -2[\sin x+\sin \alpha ]+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }},dx=\int_{{}}^{{}}{\frac{2({{\cos }^{2}}x-{{\cos }^{2}}\alpha )}{\cos x-\cos \alpha },dx} $ $ =2\int_{{}}^{{}}{(\cos x+\cos \alpha ),dx}=2(\sin x+x\cos \alpha ) $ .