Integral Calculus Question 315

Question: $ \int_{{}}^{{}}{\frac{1-\tan x}{1+\tan x}\ dx=} $

[MP PET 1994]

Options:

A) $ \log \sec ( \frac{\pi }{4}-x )+c $

B) $ \log \cos ( \frac{\pi }{4}+x )+c $

C) $ \log \sin ( \frac{\pi }{4}+x )+c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\frac{1-\tan x}{1+\tan x},dx}=\int_{{}}^{{}}{\tan ( \frac{\pi }{4}-x )},dx $ $ =\int_{{}}^{{}}{\frac{\sin ( \frac{\pi }{4}-x )}{\cos ( \frac{\pi }{4}-x )}},dx=\log \cos ( \frac{\pi }{4}-x )+c $ $ =\log \sin ( \frac{\pi }{4}+x )+c $ .