Integral Calculus Question 316

Question: $ \int_{{}}^{{}}{x^{2}\sin 2x}\ dx= $

[IIT 1974]

Options:

A) $ \frac{1}{2}x^{2}\cos 2x+\frac{1}{2}x\sin 2x+\frac{1}{4}\cos 2x+c $

B) $ -\frac{1}{2}x^{2}\cos 2x+\frac{1}{2}x\sin 2x+\frac{1}{4}\cos 2x+c $

C) $ \frac{1}{2}x^{2}\cos 2x-\frac{1}{2}x\sin 2x+\frac{1}{4}\cos 2x+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_{{}}^{{}}{x^{2}\sin 2x,dx}=\frac{-x^{2}\cos 2x}{2}+\int_{{}}^{{}}{\frac{2x\cos 2x}{2},dx}+c $ $ =-\frac{x^{2}\cos 2x}{2}+\frac{x\sin 2x}{2}+\frac{\cos 2x}{4}+c. $