Integral Calculus Question 32

Question: $ \int{\frac{x^{2}}{x^{2}+4}dx} $ equals to

[RPET 2001]

Options:

A) $ x-2{{\tan }^{-1}}(x/2)+c $

B) $ x+2{{\tan }^{-1}}(x/2)+c $

C) $ x-4{{\tan }^{-1}}(x/2)+c $

D) $ x+4{{\tan }^{-1}}(x/2)+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int{\frac{x^{2}}{x^{2}+4}dx} $ $ =\int{\frac{x^{2}+4-4}{(x^{2}+4)}dx} $
Þ $ I=\int{[ 1-\frac{4}{x^{2}+4} ],dx} $ $ =\int{dx-\int{\frac{4}{x^{2}+4}dx}} $
$ \Rightarrow I=x-4\int{\frac{dx}{x^{2}+{{(2)}^{2}}}} $ $ =x-\frac{4}{2}{{\tan }^{-1}}(x/2)+c $ $ =x-2{{\tan }^{-1}}\frac{x}{2}+c $ .