Integral Calculus Question 322
Question: $ \int_{{}}^{{}}{\frac{x^{4}+x^{2}+1}{x^{2}-x+1}\ dx=} $
Options:
A) $ \frac{1}{3}x^{3}+\frac{1}{2}x^{2}+x+c $
B) $ \frac{1}{3}x^{3}-\frac{1}{2}x^{2}+x+c $
C) $ \frac{1}{3}x^{3}+\frac{1}{2}x^{2}-x+c $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ \int_{{}}^{{}}{\frac{x^{4}+x^{2}+1}{x^{2}-x+1},dx}=\int_{{}}^{{}}{(x^{2}+x+1),dx}=\frac{x^{3}}{3}+\frac{x^{2}}{2}+x+c. $