Integral Calculus Question 323

Question: $ \int_{{}}^{{}}{\frac{x^{5}\ dx}{\sqrt{(1+x^{3})}}=} $

[IIT 1975]

Options:

A) $ \frac{2}{3}\sqrt{(1+x^{3})}(x^{3}+2) $

B) $ \frac{2}{9}\sqrt{(1+x^{3})}(x^{3}-4) $

C) $ \frac{2}{9}\sqrt{(1+x^{3})}(x^{3}+4) $

D) $ \frac{2}{9}\sqrt{(1+x^{3})}(x^{3}-2) $

Show Answer

Answer:

Correct Answer: D

Solution:

Here $ x^{5}=x^{3}x^{2} $ and differential coefficient of $ x^{3} $ is $ 3{x^{2.}} $ In order to remove fractional powers, we put $ 1+x^{3}=t^{2}\Rightarrow 3x^{2}dx=2t.,dt,; $ Also $ x^{3}=t^{2}-1 $ $ I=\int_{{}}^{{}}{\frac{(t^{2}-1)}{t}( \frac{2}{3}t,dt )=\frac{2}{3}\int_{{}}^{{}}{(t^{2}-1),dt}} $ $ =\frac{2}{3}( \frac{t^{3}}{3}-t )=\frac{2}{9}t,(t^{2}-3) $ = $ \frac{2}{9}\sqrt{(1+x^{3})},(x^{3}-2) $