Integral Calculus Question 326

Question: $ \int_{{}}^{{}}{{\log_{10}}x\ dx=} $

[Roorkee 1973]

Options:

A) $ x{\log_{10}}x+c $

B) $ x({\log_{10}}x+{\log_{10}}e)+c $

C) $ {\log_{10}}x+c $

D) $ x({\log_{10}}x-{\log_{10}}e)+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{{\log_{10}}x,dx}=\int_{{}}^{{}}{\frac{\log x}{\log 10},dx} $ $ =\frac{1}{\log 10}[x\log x-x]=x[{\log_{10}}x-{\log_{10}}e]+c $ .