Integral Calculus Question 326
Question: $ \int_{{}}^{{}}{{\log_{10}}x\ dx=} $
[Roorkee 1973]
Options:
A) $ x{\log_{10}}x+c $
B) $ x({\log_{10}}x+{\log_{10}}e)+c $
C) $ {\log_{10}}x+c $
D) $ x({\log_{10}}x-{\log_{10}}e)+c $
Show Answer
Answer:
Correct Answer: D
Solution:
$ \int_{{}}^{{}}{{\log_{10}}x,dx}=\int_{{}}^{{}}{\frac{\log x}{\log 10},dx} $ $ =\frac{1}{\log 10}[x\log x-x]=x[{\log_{10}}x-{\log_{10}}e]+c $ .