Integral Calculus Question 331

Question: $ \int_{{}}^{{}}{x^{n}\log x\ dx=} $

Options:

A) $ \frac{{x^{n+1}}}{n+1}{ \log x+\frac{1}{n+1} }+c $

B) $ \frac{{x^{n+1}}}{n+1}{ \log x+\frac{2}{n+1} }+c $

C) $ \frac{{x^{n+1}}}{n+1}{ 2\log x-\frac{1}{n+1} }+c $

D) $ \frac{{x^{n+1}}}{n+1}{ \log x-\frac{1}{n+1} }+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{x^{n}\log x,dx}=\log x,.,\frac{{x^{n+1}}}{n+1}-\int_{{}}^{{}}{\frac{{x^{n+1}}}{n+1},.,\frac{1}{x},dx} $ $ =\frac{{x^{n+1}}}{n+1}\log x-\frac{{x^{n+1}}}{{{(n+1)}^{2}}}+c=\frac{{x^{n+1}}}{n+1}[ \log x-\frac{1}{n+1} ]+c. $