Integral Calculus Question 336

Question: $ \int_{{}}^{{}}{[ \frac{1}{\log x}-\frac{1}{{{(\log x)}^{2}}} ]dx=} $

Options:

A) $ \frac{1}{\log x}+c $

B) $ \frac{x}{\log x}+c $

C) $ \frac{x}{{{(\log x)}^{2}}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{[ \frac{1}{\log x}-\frac{1}{{{(\log x)}^{2}}} ]},dx=\int_{{}}^{{}}{\frac{1}{\log x},dx-\int_{{}}^{{}}{\frac{1}{{{(\log x)}^{2}}},dx}} $ $ =\frac{x}{\log x}+\int_{{}}^{{}}{\frac{1}{{{(\log x)}^{2}}},.,\frac{1}{x}x,dx}-\int_{{}}^{{}}{\frac{1}{{{(\log x)}^{2}}}}dx+c=\frac{x}{\log x}+c $ .