Integral Calculus Question 337

Question: $ \int_{{}}^{{}}{\frac{\log x}{{{(1+\log x)}^{2}}}dx=} $

Options:

A) $ \frac{1}{1+\log x}+c $

B) $ \frac{x}{{{(1+\log x)}^{2}}}+c $

C) $ \frac{x}{1+\log x}+c $

D) $ \frac{1}{{{(1+\log x)}^{2}}}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\frac{\log x}{{{(1+\log x)}^{2}}},dx} $ . Put $ 1+\log x=t\Rightarrow \frac{1}{x}dx=dt $
$ \Rightarrow dx=x,dt={e^{t-1}}dt, $ then it reduces to $ \int_{{}}^{{}}{\frac{(t-1),{e^{t-1}}}{t^{2}}dt}=\int_{{}}^{{}}{{e^{t-1}}( \frac{1}{t}-\frac{1}{t^{2}} ),dt}=\frac{{e^{t-1}}}{t}=\frac{x}{1+\log x}+c $ .