Integral Calculus Question 338

Question: $ \int_{{}}^{{}}{( \frac{2+\sin 2x}{1+\cos 2x} )e^{x}dx=} $

[AISSE 1982]

Options:

A) $ e^{x}\cot x+c $

B) $ -e^{x}\cot x+c $

C) $ -e^{x}\tan x+c $

D) $ e^{x}\tan x+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{( \frac{2+\sin 2x}{1+\cos 2x} )e^{x},dx}=\int_{{}}^{{}}{( \frac{2e^{x}}{1+\cos 2x} )dx}+\int_{{}}^{{}}{\frac{e^{x}\sin 2x}{1+\cos 2x}dx} $ $ =\int_{{}}^{{}}{e^{x}{{\sec }^{2}}x,dx}+\int_{{}}^{{}}{e^{x}\tan x,dx=e^{x}\tan x+c} $ .