Integral Calculus Question 339

Question: $ \int_{{}}^{{}}{e^{x}\sin x\ dx=} $

[IIT 1978; AI CBSE 1980; MP PET 1999]

Options:

A) $ \frac{1}{2}e^{x}(\sin x+\cos x)+c $

B) $ \frac{1}{2}e^{x}(\sin x-\cos x)+c $

C) $ e^{x}(\sin x+\cos x)+c $

D) $ e^{x}(\sin x-\cos x)+c $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_{{}}^{{}}{e^{x}\sin x,dx}=e^{x}\sin x-\int_{{}}^{{}}{e^{x}\cos x,dx+c} $ $ =e^{x}\sin x-e^{x}\cos x-\int_{{}}^{{}}{e^{x}\sin x,dx+c} $
Þ $ 2I=e^{x}(\sin x-\cos x)+c $ Þ $ I=\frac{1}{2}e^{x}(\sin x-\cos x)+c $ .