Integral Calculus Question 34

Question: If $ \int_{{}}^{{}}{\sin 5x\cos 3x\ dx=-\frac{\cos 8x}{16}}+A $ , then $ A= $

[MP PET 1992]

Options:

A) $ \frac{\sin 2x}{16}+ $ constant

B) $ -\frac{\cos 2x}{4}+ $ constant

C) Constant

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\sin 5x\cos 3x\ dx}=\frac{1}{2}\int_{{}}^{{}}{(\sin 8x+\sin 2x)}dx $ $ =\frac{-\cos 8x}{16}-\frac{\cos 2x}{4}+c $ Equating to the given value, we get $ A=\frac{-\cos 2x}{4}+c $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें