Integral Calculus Question 349

Question: $ \int_{{}}^{{}}{x^{3}{e^{x^{2}}}dx=} $

[MNR 1980]

Options:

A) $ \frac{1}{2}(x^{2}+1){e^{x^{2}}}+c $

B) $ (x^{2}+1){e^{x^{2}}}+c $

C) $ \frac{1}{2}(x^{2}-1){e^{x^{2}}}+c $

D) $ (x^{2}-1){e^{x^{2}}}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ x^{2}=t\Rightarrow 2x,dx=dt, $ then $ \int_{{}}^{{}}{x^{3}{e^{x^{2}}}dx}=\frac{1}{2}\int_{{}}^{{}}{te^{t}dt} $ $ =\frac{1}{2}[ te^{t}-e^{t} ]+c $ $ =\frac{1}{2}{e^{x^{2}}}(x^{2}-1)+c. $