Integral Calculus Question 356

Question: $ \int_{{}}^{{}}{\frac{\sin x\cos x}{a{{\cos }^{2}}x+b{{\sin }^{2}}x}dx=} $

[AI CBSE 1988, 89]

Options:

A) $ \frac{1}{2(b-a)}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c $

B) $ \frac{1}{b-a}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c $

C) $ \frac{1}{2}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ a{{\cos }^{2}}x+b{{\sin }^{2}}x=t $
$ \Rightarrow 2(b-a)\sin x\cos x=dt, $ then $ \int_{{}}^{{}}{\frac{\sin x\cos x,dx}{a{{\cos }^{2}}x+b{{\sin }^{2}}x}=\frac{1}{2(b-a)}\int_{{}}^{{}}{\frac{1}{t},dt}} $ $ =\frac{1}{2(b-a)}\log (a{{\cos }^{2}}x+b{{\sin }^{2}}x)+c $ .