Integral Calculus Question 36

Question: $ \int_{{}}^{{}}{{{\sin }^{3}}x{{\cos }^{2}}x\ dx=} $

Options:

A) $ \frac{{{\cos }^{5}}x}{5}-\frac{{{\cos }^{3}}x}{3}+c $

B) $ \frac{{{\cos }^{5}}x}{5}+\frac{{{\cos }^{3}}x}{3}+c $

C) $ \frac{{{\sin }^{5}}x}{5}-\frac{{{\sin }^{3}}x}{3}+c $

D) $ \frac{{{\sin }^{5}}x}{5}+\frac{{{\sin }^{3}}x}{3}+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{{{\sin }^{3}}x{{\cos }^{2}}x,dx}=\int_{{}}^{{}}{(1-{{\cos }^{2}}x){{\cos }^{2}}x,.,\sin x,dx} $ Put $ \cos x=t\Rightarrow -\sin x,dx=dt, $ then it reduces to $ -\int_{{}}^{{}}{(t^{2}-t^{4})dt}=\frac{t^{5}}{5}-\frac{t^{3}}{3}+c=\frac{{{(\cos x)}^{5}}}{5}-\frac{{{(\cos x)}^{3}}}{3}+c $ .