Integral Calculus Question 360

Question: $ \int_{{}}^{{}}{\frac{xe^{x}}{{{(1+x)}^{2}}}dx=} $

[MP PET 1997; UPSEAT 2001; RPET 2002]

Options:

A) $ \frac{{e^{-x}}}{1+x}+c $

B) $ -\frac{{e^{-x}}}{1+x}+c $

C) $ \frac{e^{x}}{1+x}+c $

D) $ -\frac{e^{x}}{1+x}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\frac{xe^{x}}{{{(1+x)}^{2}}},dx=\int_{{}}^{{}}{\frac{(x+1-1)}{{{(1+x)}^{2}}}e^{x}dx}} $ $ =\int_{{}}^{{}}{e^{x}( \frac{1}{1+x}-\frac{1}{{{(1+x)}^{2}}} ),dx}=\frac{e^{x}}{1+x}+c $ .