Integral Calculus Question 363

Question: $ \int_{{}}^{{}}{e^{x}

[\tan x-\log (\cos x)]\ dx=} $ [MP PET 1991]

Options:

A) $ e^{x}\log (\sec x)+c $

B) $ e^{x}\log (\cos ecx)+c $

C) $ e^{x}\log (\cos x)+c $

D) $ e^{x}\log (\sin x)+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{e^{x}[\tan x-\log (\cos x)],dx}=\int_{{}}^{{}}{e^{x}[\tan x+\log (\sec x)]},dx $ $ =e^{x}\log (\sec x)+c $ $ { Since\int_{{}}^{{}}{e^{x}{ f(x)+{f}’(x) }dx=e^{x}f(x)+c} } $ .