Integral Calculus Question 364

Question: $ \int_{{}}^{{}}{e^{x}\sin x(\sin x+2\cos x)}\ dx= $

[MP PET 1988]

Options:

A) $ e^{x}{{\sin }^{2}}x+c $

B) $ e^{x}\sin x+c $

C) $ e^{x}\sin 2x+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{e^{x}\sin x(\sin x+2\cos x)dx} $ $ =\int_{{}}^{{}}{e^{x}{{\sin }^{2}}x,dx}+\int_{{}}^{{}}{e^{x}2\sin x,\cos xdx} $ $ =\int_{{}}^{{}}{e^{x}{{\sin }^{2}}x,dx}+\int_{{}}^{{}}{e^{x}\sin 2x,dx} $ $ =e^{x}{{\sin }^{2}}x-\int_{{}}^{{}}{e^{x}\sin 2x,dx}+\int_{{}}^{{}}{e^{x}\sin 2x,dx,+c} $ $ =e^{x}{{\sin }^{2}}x+c. $ Aliter : $ \int_{{}}^{{}}{e^{x}({{\sin }^{2}}x+\sin 2x)dx=e^{x}{{\sin }^{2}}x+c.} $