Integral Calculus Question 365

Question: $ \int_{{}}^{{}}{e^{2x}\frac{1+\sin 2x}{1+\cos 2x}}\ dx= $

Options:

A) $ e^{2x}\tan x+c $

B) $ e^{2x}\cot x+c $

C) $ \frac{e^{2x}\tan x}{2}+c $

D) $ \frac{e^{2x}\cot x}{2}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{e^{2x}\frac{1+\sin 2x}{1+\cos 2x},dx}=\int_{{}}^{{}}{e^{2x}[ \frac{1}{1+\cos 2x}+\frac{\sin 2x}{1+\cos 2x} ],dx} $ $ =\int_{{}}^{{}}{e^{2x}[ \frac{{{\sec }^{2}}x}{2}+\tan x ]},dx $ $ =\frac{1}{2}\int_{{}}^{{}}{e^{2x}{{\sec }^{2}}x,dx}+\int_{{}}^{{}}{e^{2x}\tan x,dx} $ $ =\frac{e^{2x}\tan x}{2}-\int_{{}}^{{}}{\frac{e^{2x}{{\sec }^{2}}x}{2},dx}+\int_{{}}^{{}}{\frac{e^{2x}{{\sec }^{2}}x}{2},dx}+c $ $ =\frac{e^{2x}\tan x}{2}+c. $