Integral Calculus Question 367

Question: $ \int_{{}}^{{}}{e^{x}[ \frac{1+x\log x}{x} ]\ dx=} $

Options:

A) $ e^{x}+\log x+c $

B) $ \frac{e^{x}}{\log x}+c $

C) $ e^{x}-\log x+c $

D) $ e^{x}\log x+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_{{}}^{{}}{e^{x}[ \frac{1+x\log x}{x} ],dx=}\int_{{}}^{{}}{e^{x}( \log x+\frac{1}{x} ),dx}=e^{x}\log x+c $ .