Integral Calculus Question 372
Question: $ \int_{{}}^{{}}{e^{x}( \frac{1}{x}-\frac{1}{x^{2}} )},dx= $
[AISSE 1983; MP PET 1994, 96]
Options:
A) $ -\frac{e^{x}}{x^{2}}+c $
B) $ \frac{e^{x}}{x^{2}}+c $
C) $ \frac{e^{x}}{x}+c $
D) $ -\frac{e^{x}}{x}+c $
Show Answer
Answer:
Correct Answer: C
Solution:
$ \int_{{}}^{{}}{e^{x}( \frac{1}{x}-\frac{1}{x^{2}} )},dx=e^{x}\frac{1}{x}+c $ Since, we have $ \int_{{}}^{{}}{e^{x}{ f(x)+{f}’(x) },dx}=e^{x}f(x)+c. $