Integral Calculus Question 374

Question: is equal to

[RPET 2000]

Options:

A) $ -e^{x}\tan ,( x/2 ) $

B) $ -e^{x}\cot ,( x/2 ) $

C) $ -\frac{1}{2}e^{x}\tan ,( \frac{x}{2} ) $

D) $ \frac{1}{2}e^{x}\cot ,( \frac{x}{2} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int{e^{x}( \frac{1-\sin x}{1-\cos x} )dx} $ $ =\int{e^{x}( \frac{1-\sin x}{2{{\sin }^{2}}(x/2)} ),dx} $
Þ $ I=\int{e^{x}( \frac{1}{2}cose{c^{2}}\frac{x}{2}-\cot \frac{x}{2} )},dx $ $ ( \because \int{e^{x}( f(x)+f’(x) )}=e^{x}f(x)+c ) $
$ \therefore I=e^{x}( -\cot \frac{x}{2} )+c=-e^{x}\cot \frac{x}{2}+c $ .