Integral Calculus Question 383

Question: $ \int_{{}}^{{}}{{{\sin }^{-1}}x\ dx} $ is equal to

[MP PET 2004]

Options:

A) $ \frac{1}{\sqrt{1-x^{2}}}+c $

B) $ x{{\sin }^{-1}}x-\sqrt{1-x^{2}}+c $

C) $ {{\cos }^{-1}}x+c $

D) $ x{{\sin }^{-1}}x+\sqrt{1-x^{2}}+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_{{}}^{{}}{{{\sin }^{-1}}x}.1,dx,dx $ $ I={{\sin }^{-1}}x.x-\int_{{}}^{{}}{\frac{1}{\sqrt{1-x^{2}}}},.,x,dx $ Put $ 1-x^{2}=t^{2}\Rightarrow -2xdx=2tdt $ in the second integral and solve it, therefore $ I=x{{\sin }^{-1}}x.+\sqrt{1-x^{2}}+c $ .