Integral Calculus Question 384

Question: $ \int_{{}}^{{}}{\frac{x-\sin x}{1-\cos x}dx=} $

[AISSE 1989]

Options:

A) $ x\cot \frac{x}{2}+c $

B) $ -x\cot \frac{x}{2}+c $

C) $ \cot \frac{x}{2}+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{x-\sin x}{1-\cos x},dx}=\int_{{}}^{{}}{\frac{x}{1-\cos x},dx}-\int_{{}}^{{}}{\frac{\sin x}{1-\cos x},dx} $ $ =\frac{1}{2}\int_{{}}^{{}}{x,cose{c^{2}}( \frac{x}{2} ),dx}-\int_{{}}^{{}}{\frac{2\sin (x/2)\cos (x/2)}{2{{\sin }^{2}}(x/2)},dx} $ $ =\frac{1}{2}\int_{{}}^{{}}{x,cose{c^{2}}( \frac{x}{2} ),dx}-\int_{{}}^{{}}{\cot ( \frac{x}{2} ),dx} $ $ =-x\cot ( \frac{x}{2} )+c $ .