Integral Calculus Question 386

Question: If $ \int_{{}}^{{}}{\frac{e^{x}(1+\sin x)dx}{1+\cos x}=e^{x}f(x)+c} $ , then $ f(x)= $

[RPET 1997; Karnataka CET 2003, 05; Orissa JEE 2004]

Options:

A) $ \sin \frac{x}{2} $

B) $ \cos \frac{x}{2} $

C) $ \tan \frac{x}{2} $

D) $ \log \frac{x}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_{{}}^{{}}{e^{x}( \frac{1+\sin x}{1+\cos x} ),dx}=\int_{{}}^{{}}{e^{x}[ \frac{1+2\sin (x/2),\cos (x/2)}{2{{\cos }^{2}}(x/2)} ]dx} $ $ I=\int_{{}}^{{}}{e^{x}[ \frac{1}{2}{{\sec }^{2}}(x/2)+\tan (x/2) ],dx}=e^{x}.\tan (x/2)+c $ $ {\because ,\int_{{}}^{{}}{e^{x}[f(x)+{f}’(x),]dx=e^{x}.,f(x)+c}} $