Integral Calculus Question 387

Question: $ \int_{{}}^{{}}{\sqrt{x}{e^{\sqrt{x}}}\ dx=} $

[Karnataka CET 2004]

Options:

A) $ 2\sqrt{x}-{e^{\sqrt{x}}}-4\sqrt{x}\ {e^{\sqrt{x}}}+c $

B) $ (2x-4\sqrt{x}+4){e^{\sqrt{x}}}+c $

C) $ (2x+4\sqrt{x}+4){e^{\sqrt{x}}}+c $

D) $ (1-4\sqrt{x}){e^{\sqrt{x}}}+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_{{}}^{{}}{\sqrt{x}.{e^{\sqrt{x}}}}dx $ . Let $ x=t^{2}\Rightarrow dx=2t,dt $
$ \therefore I=2\int_{a}^{b}{t^{2}},e^{t}dt $ Þ $ I=2(t^{2}e^{t}-2te^{t}+2e^{t})+c $ Þ $ I=\frac{1}{\sqrt{2}}\log | \tan ( \frac{x}{2}+\frac{3\pi }{8} ), |+c $ i.e., $ I=e^{\sqrt{x}}[2x-4\sqrt{x}+4]+c $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index