Integral Calculus Question 388

Question: If $ x\in ( \frac{\pi }{4},\frac{3\pi }{4} ) $ , then $ \int_{{}}^{{}}{\frac{\sin x-\cos x}{\sqrt{1-\sin 2x}}{e^{\sin x}}\cos x\ dx=} $

Options:

A) $ {e^{\sin x}}+c $

B) $ {e^{\sin x-\cos x}}+c $

C) $ {e^{\sin x+\cos x}}+c $

D) $ {e^{\cos x-\sin x}}+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\frac{\sin x-\cos x}{\sqrt{1-\sin 2x}}{e^{\sin x}}\cos x,dx}=\int_{{}}^{{}}{\frac{\sin x-\cos x}{\sin x-\cos x}{e^{\sin x}}\cos x,dx} $ $ =\int_{{}}^{{}}{{e^{\sin x}}\cos x,dx}={e^{\sin x}}+c $ .