Integral Calculus Question 392

Question: $ \int_{{}}^{{}}{\frac{\sqrt{\tan x}}{\sin x\cos x}}\ dx= $

[Bihar CEE 1974; MP PET 2002; Kerala (Engg.) 2002]

Options:

A) $ 2\sqrt{\sec x}+c $

B) $ 2\sqrt{\tan x}+c $

C) $ \frac{2}{\sqrt{\tan x}}+c $

D) $ \frac{2}{\sqrt{\sec x}}+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{\sqrt{\tan x}}{\sin x\cos x},dx}=\int_{{}}^{{}}{\frac{\tan x}{\sqrt{\tan x}\sin x\cos x}dx} $ $ =\int_{{}}^{{}}{\frac{\sin x\sec x}{\sqrt{\tan x}\sin x\cos x},dx}=\int_{{}}^{{}}{\frac{{{\sec }^{2}}x}{\sqrt{\tan x}},dx} $ Put $ t=\tan x\Rightarrow dt={{\sec }^{2}}x,dx, $ then it reduces to $ \int_{{}}^{{}}{\frac{1}{\sqrt{t}},dt}=2{t^{1/2}}+c=2\sqrt{\tan x}+c $ .