Integral Calculus Question 397

Question: $ \int_{{}}^{{}}{\frac{{{\sec }^{2}}x}{1+\tan x}\ dx=} $

[MP PET 1987]

Options:

A) $ \log (\cos x+\sin x)+c $

B) $ \log ({{\sec }^{2}}x)+c $

C) $ \log (1+\tan x)+c $

D) $ -\frac{1}{{{(1+\tan x)}^{2}}}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ t=1+\tan x\Rightarrow dt={{\sec }^{2}}x,dx $ $ \int_{{}}^{{}}{\frac{{{\sec }^{2}}x}{1+\tan x}},dx=\int_{{}}^{{}}{\frac{1}{t},dt=\log t+c} $ $ =\log (1+\tan x)+c. $