Integral Calculus Question 400

Question: $ \int_{{}}^{{}}{\frac{1}{{{\cos }^{2}}x{{(1-\tan x)}^{2}}}dx=} $

Options:

A) $ \frac{1}{\tan x-1}+c $

B) $ \frac{1}{1-\tan x}+c $

C) $ -\frac{1}{3}\frac{1}{{{(1-\tan x)}^{3}}}+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{1}{{{\cos }^{2}}x{{(1-\tan x)}^{2}}}dx=\int_{{}}^{{}}{\frac{{{\sec }^{2}}x,dx}{{{(\tan x-1)}^{2}}}}} $ Put $ \tan x-1=t\Rightarrow {{\sec }^{2}}x,dx=dt, $ then it reduces to $ \int_{{}}^{{}}{\frac{1}{t^{2}},dt}=\frac{-1}{\tan x-1}+c=\frac{1}{1-\tan x}+c. $