Integral Calculus Question 408

Question: $ \int_{{}}^{{}}{{{\tan }^{-1}}\frac{2x}{1-x^{2}}dx=} $

[MP PET 1991]

Options:

A) $ x{{\tan }^{-1}}x+c $

B) $ x{{\tan }^{-1}}x-\log (1+x^{2})+c $

C) $ 2x{{\tan }^{-1}}x+\log (1+x^{2})+c $

D) $ 2x{{\tan }^{-1}}x-\log (1+x^{2})+c $

Show Answer

Answer:

Correct Answer: D

Solution:

Put $ x=\tan \theta \Rightarrow dx={{\sec }^{2}}\theta ,d\theta , $ then $ \int_{{}}^{{}}{{{\tan }^{-1}}\frac{2x}{1-x^{2}},dx}=\int_{{}}^{{}}{{{\tan }^{-1}}\frac{2\tan \theta }{1-{{\tan }^{2}}\theta }},{{\sec }^{2}}\theta ,d\theta $ $ =\int_{{}}^{{}}{{{\tan }^{-1}}(\tan 2\theta ){{\sec }^{2}}\theta ,d\theta }=\int_{{}}^{{}}{2\theta {{\sec }^{2}}\theta ,d\theta } $ $ =2[ \theta \tan \theta -\int_{{}}^{{}}{\tan \theta ,d\theta } ] $ $ =2x{{\tan }^{-1}}x-\log (x^{2}+1)+c. $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index