Integral Calculus Question 416

Question: $ \int_{{}}^{{}}{\cos x\sqrt{4-{{\sin }^{2}}x}}\ dx= $

Options:

A) $ \frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}-2{{\sin }^{-1}}( \frac{1}{2}\sin x )+c $

B) $ \frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}+2{{\sin }^{-1}}( \frac{1}{2}\sin x )+c $

C) $ \frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}+{{\sin }^{-1}}( \frac{1}{2}\sin x )+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Putting $ \sin x=t\Rightarrow \cos x,dx=dt, $ we get $ \int_{{}}^{{}}{\cos x\sqrt{4-{{\sin }^{2}}x,}dx}=\int_{{}}^{{}}{\sqrt{4-t^{2}}dt=\int_{{}}^{{}}{\sqrt{{{(2)}^{2}}-t^{2}}dt}} $ $ =\frac{t}{2}\sqrt{4-t^{2}}+\frac{4}{2}{{\sin }^{-1}}\frac{t}{2}+c $ $ =\frac{1}{2}\sin x\sqrt{4-{{\sin }^{2}}x}+2{{\sin }^{-1}}( \frac{1}{2}\sin x )+c. $