Integral Calculus Question 417

Question: The value of $ \int{{{\sec }^{3}}xdx} $ will be

[UPSEAT 1999]

Options:

A) $ \frac{1}{2}[ ,\sec x\tan x+\log (\sec x+\tan x) ] $

B) $ \frac{1}{3}[ ,\sec x\tan x+\log (\sec x+\tan x) ] $

C) $ \frac{1}{4}[ ,\sec x\tan x+\log (\sec x+\tan x) ] $

D) $ \frac{1}{8}[ ,\sec x\tan x+\log (\sec x+\tan x) ] $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ I=\int{{{\sec }^{3}}xdx} $ $ =\int{\sec x{{\sec }^{2}}xdx} $

$ \Rightarrow I=\sec x\tan x-\int{\sec x,{{\tan }^{2}}x,dx} $

$ \Rightarrow I=\sec x\tan x-\int{\sec x,({{\sec }^{2}}x-1)dx} $

$ \Rightarrow I=\sec x\tan x-\int{{{\sec }^{3}}x,dx}+\int{\sec x,dx} $

$ \Rightarrow \ I=\sec x\tan x-I+\log ,(\sec x,+\tan x,) $

$ \Rightarrow 2I=\sec x\tan x+\log (\sec x+\tan x) $

$ \Rightarrow I=\frac{1}{2}[\sec x\tan x+\log (\sec x+\tan x)] $ .