Integral Calculus Question 419

Question: If $ \int{\sqrt{2}\sqrt{1+\sin x}}dx=-,4\cos (ax+b)+c $ then the value of (a, b) is

[UPSEAT 2002]

Options:

A) $ \frac{1}{2},,\frac{\pi }{4} $

B) $ 1,,\frac{\pi }{2} $

C) 1, 1

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int{\sqrt{2}\sqrt{1+\sin x}},dx $ $ =\sqrt{2}\int{( \sin \frac{x}{2}+\cos \frac{x}{2} ),dx} $ $ =2\int{\sin ( \frac{\pi }{4}+\frac{x}{2} ),dx=-,4\cos ,( \frac{x}{2}+\frac{\pi }{4} )+c} $ On comparing, $ a=\frac{1}{2},,b=\frac{\pi }{4}. $