Integral Calculus Question 434

Question: The value of $ \int_{{}}^{{}}{\frac{dx}{x\sqrt{x^{4}-1}}} $ is

Options:

A) $ \frac{1}{2}{{\sec }^{-1}}x^{2}+k $

B) $ \log x\sqrt{x^{4}-1}+k $

C) $ x\log \sqrt{x^{4}-1}+k $

D) $ \log \sqrt{x^{4}-1}+k $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_{{}}^{{}}{\frac{dx}{x\sqrt{x^{4}-1}}} $ Put $ x^{2}=t\Rightarrow 2x,dx=dt\Rightarrow dx=\frac{dt}{2x}=\frac{dt}{2\sqrt{t}} $
$ \therefore ,I=\int_{{}}^{{}}{\frac{dt}{2t\sqrt{t^{2}-1}}}=\frac{1}{2}{{\sec }^{-1}}t+k=\frac{1}{2}{{\sec }^{-1}}x^{2}+k $