Integral Calculus Question 44

Question: $ \int_{{}}^{{}}{\sqrt{x^{2}-8x+7}}\ dx= $

Options:

A) $ \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}+9\log| x-4+\sqrt{x^{2}-8x+7}|+c $

B) $ \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-3\sqrt{2}\log |x-4+\sqrt{x^{2}-8x+7}|+c $

C) $ \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\frac{9}{2}\log| x-4+\sqrt{x^{2}-8x+7}|+c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\sqrt{x^{2}-8x+7},dx=\int_{{}}^{{}}{\sqrt{{{(x-4)}^{2}}-{{(3)}^{2}}},dx}} $

Now apply formula of $ \int_{{}}^{{}}{\sqrt{x^{2}-a^{2}},dx.} $