Integral Calculus Question 44
Question: $ \int_{{}}^{{}}{\sqrt{x^{2}-8x+7}}\ dx= $
Options:
A) $ \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}+9\log| x-4+\sqrt{x^{2}-8x+7}|+c $
B) $ \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-3\sqrt{2}\log |x-4+\sqrt{x^{2}-8x+7}|+c $
C) $ \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\frac{9}{2}\log| x-4+\sqrt{x^{2}-8x+7}|+c $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \int_{{}}^{{}}{\sqrt{x^{2}-8x+7},dx=\int_{{}}^{{}}{\sqrt{{{(x-4)}^{2}}-{{(3)}^{2}}},dx}} $
Now apply formula of $ \int_{{}}^{{}}{\sqrt{x^{2}-a^{2}},dx.} $