Integral Calculus Question 440

Question: For which of the following functions, the substitution $ x^{2}=t $ is applicable

Options:

A) $ \int_{{}}^{{}}{x^{6}{{\tan }^{-1}}x^{3}}\ dx $

B) $ \int_{{}}^{{}}{{{\tan }^{-1}}( \frac{2x}{1-x^{2}} )\ dx} $

C) $ \int_{{}}^{{}}{x^{3}\cos x^{2}\ dx} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ x^{2}=t $ is applicable for $ \int_{{}}^{{}}{x^{3}\cos x^{2},dx} $ $ =\frac{1}{2}\int_{{}}^{{}}{t\cos t,dt}=\frac{1}{2}(t\sin t-\int_{{}}^{{}}{\sin t,dt+c)} $ $ =\frac{1}{2}(t\sin t+\cos t+c)=\frac{1}{2}(x^{2}\sin x^{2}+\cos x^{2}+c). $